Pages

Showing posts with label power. Show all posts
Showing posts with label power. Show all posts

Sunday, September 21, 2014

Simple 300w Subwoofer Power Amplifier Wiring Circuit Diagram

 Simple 300w Subwoofer Power Amplifier Wiring Circuit Diagram

 Simple 300w Subwoofer Power Amplifier Wiring Circuit Diagram
Subwoofer Speaker Wiring Diagram   Subwoofer Review.



 Simple 300w Subwoofer Power Amplifier Wiring Circuit Diagram
Subwoofer Wiring Diagrams  Four 4 Ohm Dual Voice Coil  Dvc  Speakers.


 300w Subwoofer Power Amplifier Wiring Diagram


Subwoofer Wiring Diagrams  Two 8 Ohm Single Voice Coil  Svc  Speakers.



Discuss Ep4000   Maelstrom X Ii In The Diy Subwoofers Forum.



Subwoofer Wiring Diagrams   Hip Hop Universe.Bazooka Subwoofer Wiring Diagram.



 Need Sum Help Wiring Dual Coil Sub And Box Build Trinituner Com.



Car Subwoofer Wiring


Simple 300w Subwoofer Power Amplifier Wiring Circuit Diagram
 Sub 2 Output Is An Excellent Way To Connect Your Subwoofers The Total.
Read More..

Dual Output DC DC Power Supply for AMOLED Displays

This is a dual-output switch mode power supply reference design based on the MAX17116. The part and reference circuit can provide both negative and positive supplies to AMOLED displays. [via]


Dual-Output DC/DC Power Supply for AMOLED Displays
 
The MAX17116 includes two current-mode 1.4MHz switch mode power-supply (SMPS) regulators for active-matrix organic light-emitting diode (AMOLED) displays. The positive supply is provided by a step-up regulator with a synchronous rectifier. The negative supply is provided by an inverting regulator with a synchronous rectifier.[Link]
Read More..

Build a Power On Reset Circuit Diagram

This is a simple power on switching circuit. This type of reset pulse is ideally provided by this circuit. Because of the high input impedance of the Schmidt trigger, long reset pulse times may be achieved without the excess dissipation that results when both output devices are on simultaneously, as in an ordinary gate device (B). A reset pulse is often required at power-on in a digital system. See circuit diagram below.

Simple Power On Reset Circuit Diagram

Simple Power On Reset Circuit Diagram
Read More..

Wednesday, May 29, 2013

Mosfet Amplifier with power output 400W

See figure below its power amplifier using transistor mosfet as amplifier.
Mosfet Amplifier with power output 400W
Mosfet Amplifier with power output 400W
Read More..

Tuesday, April 30, 2013

Soft Start For Switching Power Supply

Switching power supply whose output voltage is appreciably lower than its input voltage has an interesting property: the current drawn by it is smaller than its output current. However, the input power (UI) is, of course, greater than the output power. There is another aspect that needs to be watched: when the input voltage at switch-on is too low, the regulator will tend to draw the full current. When the supply cannot cope with this, it fails or the fuse blows. It is, therefore, advisable to disable the regulator at switch-on (via the on/off input). until the relevant capacitor has been charged. When the regulator then starts to draw current, the charging current has already dropped to a level which does not overload the voltage source.

Circuit diagram:Soft Start Circuit Diagram For Switching Power Supply
Soft Start Circuit For Switching Power Supply

The circuit in the diagram provides an output voltage of 5 V and is supplied by a 24 V source. The regulator need not be disabled until the capacitor is fully charged: when the potential across the capacitor has reached a level of half or more of the input voltage, all is well. This is why the zener diode in the diagram is rated at 15 V. Many regulators produced by National Semiconductor have an integral on/off switch, and this is used in the present circuit. The input is intended for TTL signals, and usually consists of a transistor whose base is accessible externally. This means that a higher switching voltage may be applied via a series resistor: the value of this in the present circuit is 22 kΩ. When the voltage across the capacitor reaches a level of about 17 V, transistor T1 comes on, whereupon the regulator is enabled.
 
 
Source: National Semiconductors
Read More..

Thursday, April 11, 2013

LM1875 – POWER AMPLIFIER 20 WATT

 
The LM1875 is a monolithic power amplifier offering very low distortion and high quality performance for consumer audio applications.

The LM1875 delivers 20 watts into a 4Ω or 8Ω load on ±25V supplies. Using an 8 load and ±30V supplies, over 30 watts of power may be delivered. The amplifier is designed to operate with a minimum of external components. Device overload protection consists of both internal current limit and thermal shutdown.

The LM1875 design takes advantage of advanced circuit techniques and processing to achieve extremely low distortion levels even at high output power levels. Other outstanding features include high gain, fast slew rate and a wide power bandwidth, large output voltage swing, high current capability, and a very wide supply range. The amplifier is internally compensated and stable for gains of 10 or greater.

Features
• Up to 30 watts output power
• AVO typically 90 dB
• Low distortion: 0.015%, 1 kHz, 20 W
• Wide power bandwidth: 70 kHz
• Protection for AC and DC short circuits to ground
• Thermal protection with parole circuit
• High current capability: 4A
• Wide supply range 16V-60V
• Internal output protection diodes
• 94 dB ripple rejection
• Plastic power package TO-220
LM1875 - POWER AMPLIFIER 20 WATT, link
Read More..

Sunday, April 7, 2013

Using LTC3601 3 3V DC Power Converter

This Dc power converter circuit is designed LTC3601 from Linear Technology and is capable to up to 1.5A output current at a 3.3V. The LTC3601 operating supply voltage range is from 4V to 15V making it suitable for a wide range of power supply applications. The operating frequency of the LTC3601 buck regulator is programmable from 800kHz to 4MHz with an external resistor enabling the use of small surface mount inductors.

The LTC3601 buck regulator can operate in two modes: Burst Mode operation and forced continuous mode to allow the user to optimize output voltage ripple, noise, and light load efficiency for a given application.
Read More..

Friday, April 5, 2013

LED Power Meter

LED power Meter circuit is a simple RF detector using diodes to charge a capacitor. The voltage developed across the capacitor is indicated by a multimeter set to a low voltage range. The circuit is soldered together without the need for a PC board, as can be seen in the diagram below and paper clips are used for the positive and negative terminals of the multimeter.
LED Power Meter circuit

The level power output of an FM transmitter is indicated by the illumination of a LED and the voltage reading on the multimeter gives a further indication of the output.

A digital multimeter may be used but the presence of RF may produce a false reading. Likewise, the radiated energy may upset some analogue meters and you may get full scale deflection on the 15v range as well as the 250v range! But the LED wont lie. It will accurately indicate the RF and you can see the change in brightness as you adjust the coils in the output stage. Some of the cheapest and simplest multimeters will give the best results as they have a low sensitivity and the radiated RF energy will not induce a reading. Even a damaged multimeter can be used, provided the 10v or 15v DC scale is operating.

The reading is not calibrated and does not represent milliwatts output. It is only a visual indication. 
We have designed over 10 FM transmitters for inclusion in the pages of this e-magazine and each one has different features and characteristics. Some are designed for 3v operation, some are for 9v operation, some are stable for hand-held situations and others are designed for high output. The illumination of the LED will range from barely visible to very bright. 

LED Power Meter Parts 
1 - 470R
1 - 100p ceramic
1 - 100n ceramic
2 - 1N 4148 diodes
1 - 5mm Red LED
1 - 2in (5cm) hook-up wire
2 - paper clips
No PC board required
Read More..

High Power Headphone Amplifier Using BD139 40

Firstly, Id like to stress that the intended use of this circuit is only one of many possible applications. Apart from the obvious usage as a headphone amplifier, the circuit can be used for a range of applications where a wide bandwidth low power amplifier is needed. Some of the options include ...
  • Reverb drive amplifier - ideal for low and medium impedance reverb tanks
  • High current line driver - suitable for very long balanced lines
  • Low power speaker amplifier - better performance than small integrated amps
  • ... and of course, a headphone amp.
In short, the amp can be used anywhere that you need an opamp with more output current than normally available. Since most are rated for around ±20-50mA, general purpose opamps are not suitable for driving long cables or anywhere else that a relatively high output current is needed.

As a headphone amplifier, this design is very similar to others on the ESP site, but the main difference is that this one (and P70) has been built and fully tested. The design is fairly standard, and every variation was checked out before arriving at the final circuit. A photo of the prototype is shown below, and at only 64 x 38mm (2.5 x 1.5 inches) it is very small - naturally, the heatsink is not included in the dimensions.

The amplifier is capable of delivering around 1.5W into 8 ohm headphones, and 2.2W into 32 ohms - this is vastly more than will ever be needed in practice. The use of a 120 Ohm output resistor is recommended, as this is supposed to be the standard source impedance for headphones. Unfortunately, many users have found that their phones perform better when driven from a low impedance source.

High Power Headphone Amplifier circuitPrototype Headphone Amplifier

The circuit is based on an opamp, with its output current boosted by a pair of transistors. Distortion is well below my measurement threshold at all levels below clipping into any impedance. Noise is virtually non-existent - even with a compression driver held to my ear, I could barely hear any, and I couldnt hear any with headphones.

WARNING
Headphones are rated in dB SPL at 1mW, and this amplifier (like many other similar headphone amps) is capable of producing extreme SPLs. The levels obtainable are sufficient to cause almost instantaneous permanent hearing damage! Never operate the amp at very high levels, and never switch the amplifier on with signal while wearing you headphones.

Always start with the volume control at minimum, and gradually increase the level until it is comfortable, but not too loud. Because of the very low distortion, it is easy to increase the level too far without noticing. Your ears are precious - safeguard them at all times.

Note the warning above - this is serious. Most headphones are capable of at least 94dB SPL at 1 mW, with some as high as 107dB SPL. Even 10mW is enough to create sound levels capable of causing hearing damage, so you must be very careful to avoid damaging levels.

Continuous dB SPLMaximum Exposure Time
858 hours
884 hours
912 hours
941 hour
9730 minutes
10015 minutes
1037.5 minutes
106< 4 minutes
109< 2minutes
112~ 1 minute
115~ 30 seconds
Table 1 - Maximum Exposure to SPL

Note that the exposure time is for any 24 hour period, and is halved for each 3dB SPL above 85dB. The above shows the accepted standards for recommended permissible exposure time for continuous time weighted average noise, according to NIOSH (National Institute for Occupational Safety and Health) and CDC (Centers for Disease Control). Although these standards are US based, they apply pretty much equally in most countries - hearing loss does not respect national boundaries.

Description

The amplifier itself is fairly conventional, and is very similar to another shown on this site (see Project 24). This amplifier does not include the active volume control, because in general it is far easier to get a good log pot (or simply fake the pots law as described in Project 01). Likewise, it does not include the cross-feed described in Project 109. If this is desired, it is very easy to implement on a small piece of tag board, or even sky hook the few components off the bypass switch. Full details of how to do this will be included in the construction guide when PCBs are available.

The output transistors are biased using only resistors, rather than constant current sources. Extensive testing showed that using current sources made no discernible difference to performance, but increased the complexity and PCB size. Using separate caps for each biasing diode does make a difference though - and although it is relatively minor, the use of the two caps is justified IMHO.

The bias diodes should be 1N4148 or similar - power diodes are not recommended, as their forward voltage is too low. This may result in distortion around the crossover region, where one transistor turns off and the other on. As shown, crossover distortion is absolutely unmeasurable with the equipment I have available.

Prototype Headphone AmplifierFigure 1 - Headphone Amplifier Circuit Diagram

Above is the schematic of one channel. Resistors and caps use the suffix R for the right channel. The second half of the dual opamp powers the right channel. Note that the volume control shown is optional, and is not on the PCB. If needed, it may be mounted in a convenient location and the output connected to the inputs of the board as shown. D1 and D2 (L and R) are 1N4148 or similar.

One of the reasons the amp is so quiet is that the entire board runs from a regulated supply, so hum (in particular) is eliminated. Although an unregulated supply can be used, this is not recommended. The supply should be separate from that used for your preamp, because of the relatively high current drawn by the amplifier (at least with low impedance phones). A P05 preamp supply can be used, and will ensure optimum performance.

The prototype amplifier has flat frequency response from 10Hz to over 100kHz. Distortion is below my measurement threshold with any level or load impedance, and output impedance is almost immeasurably low. Your headphones may be designed to operate from a 120Ω source impedance (many are), so this may be added if it improves sound quality. Adding any series resistance will reduce the available power, but it is already far greater than you can use. Without series resistance, the minimum power into various load impedances is given below (based on ±15V supplies).

ImpedancePower (Direct)120 Ohm Feed
8 Ohms1.5 W35 mW
32 Ohms2.2 W99 mW
65 Ohms1.1 W136 mW
120 Ohms595 mW149 mW
300 Ohms238 mW121 mW
600 Ohms119 mW82 mW
Table 2 - Output Power Vs. Impedance

This is not especially comprehensive, but will cover the majority of headphones in common use. In all cases, the available power is more than needed ... not so you can damage your hearing, but to allow adequate headroom for transients.

Construction

While it may be possible to build it using Veroboard or similar, there is a high risk that it will oscillate because of the very wide bandwidth of the amplifier. A capacitor may be added in parallel with R4 (L and R) to reduce the bandwidth if stability problems are encountered. Although I used an NE5532 opamp for the prototype, the circuit will also work with a TL072, but at reduced power. You may also substitute an OPA2134 or your favorite device, taking note of the following ...
opamp pinoutThe standard pinout for a dual opamp is shown on the left. If the opamps are installed backwards, they will almost certainly fail, so be careful.

The suggested NE5532 opamp was used for the prototype, and performance is exemplary. Devices such as the TL072 will be quite satisfactory for most work, but if you prefer to use ultra low noise or wide bandwidth devices, that choice is yours.

Construction is fairly critical. Because of the wide bandwidth of the NE5532 and many other audio grade opamps, the amplifier may oscillate (the prototype initially had an oscillation at almost 500kHz), so care is needed to ensure there is adequate separation between inputs and outputs. Even a small capacitive coupling between the two may be enough to cause problems.

As shown in the photo, this amplifier needs a heatsink. While it can operate without one at low power using high impedance headphones, you need to plan for all possibilities (after all, you may purchase low impedance phones sometime in the future). The heatsink does not need to be massive, and the one shown above is fine for normal listening levels. An aluminium bracket may be used to attach to the chassis - I recommend 3mm material. Note that the heatsink should always be earthed (grounded).

The output transistors must be insulated from the heatsink. Sil-Pads™ are quite suitable because of the relatively low dissipation, but greased mica or Kapton can be used if you prefer. If you use the suggested 3mm aluminium, you can drill and tap threads into the heatsink, removing the need for nuts.

Testing

Connect to a suitable power supply - remember that the supply earth (ground) must be connected! When powering up for the first time, use 56 ohm "safety" resistors in series with each supply to limit the current in case you have made a mistake in the wiring. These will reduce the supply voltage considerably because of the bias current of the output transistors.

If the voltage at the amplifier supply pins is greater than ±6V and the output voltage is close to zero, then the amplifier is probably working fine. If you have an oscilloscope, check for oscillation at the outputs ... at all volume control settings. Do this without connecting your headphones - if the amp oscillates, it may damage them.

Once you are sure that all is well, you may remove the safety resistors and permanently wire the amplifier into your chassis.
Read More..